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In this paper we present two multigrid numerical schemes over unstructured trian-
gular meshes that solve the slider air bearing problem of hard disk drives. For each
fixed slider attitude, the air bearing pressure is obtained by solving the generalized
Reynolds equation. The convection part of the equation is modeled in one scheme
by the PSI multidimensional upwind residual distribution approach and in the other
scheme by the SUPG finite element approach cast in residual distribution form. In
both schemes, a linear Galerkin method is used to discretize the diffusion terms. In
addition, a non-nested multigrid iteration technique is used to speed up the conver-
gence rate. Finally, the balanced steady state flying attitude of the slider subject to
pre-applied suspension force and torques is obtained by a Quasi—Newton iteration
method (Broyden’s method), and the results of the numerical solutions are compared
to each other and to experimental datag 2001 Academic Press

Key Words:air bearing; finite elements; hard disk drive; mesh generation and
refinement; rarefied gas flows; residual distribution scheme; unstructured meshes.

1. INTRODUCTION

Intoday’s hard disk drive (Fig. 1), the read—write element is attached to the trailing edge
an air bearing slider (Figs. 2—4). This slider glides over the rotating disk with a separat
(flying height) determined by the balance between the air bearing force and mome
generated by the extremely thin squeezed air layer under the slider and the opposing f
and moments exerted by a pre-load of the suspension, which links the slider and the actt
(Fig. 2). The slider has three degrees of freedom. It can move up and down and rotate ar
the point where the suspension is attached (Fig. 2) in the pitch and roll directions; the sl
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FIG. 1. The IBM Travelstar 25GB hard disk drive.

angle at each radial position is generally fixed. The distance between the read—write elel
and the disk surface where magnetic information is stored has significant influence on
read back signal. Fluctuation of the distance will cause noise in the read back signal.
suspension force and moments can be taken as constant values, but the air bearing
and moments have to be calculated from the generalized Reynolds equation obtained
the Boltzmann equation. To increase the storage density and reduce the signal noise
desirable to achieve a low and uniform steady state flying height across the disk. The de
goal of the next generation hard disk drive is to reach an areal density of 100 &hitfioh
requires aflying height between 5 and 10 nm. In the hard disk drive industry, the above fly
attitude goal is obtained by carefully designing the air bearing surface of the slider, wh
generally has a very complicated shape. Figures 3 and 4 show one typical design. To re
the design cost, accurate and efficient steady state air bearing design software is requ
In the slider's manufacturing process, the etching technique leaves a steep narrow
profile region (a few microns wide and a few microns in recess depth from the air bear
surface for sliders with millimeter length scale) along the rail boundaries (Fig. 4). T
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FIG. 2. A sketch of the hard disk drive assembly.
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FIG. 3. The next generation NSIC (National Storage Industry Consortium) slider air bearing surface des
with the left-hand side as the leading edge and the slider flying upside down with the suspension attached ¢
back. All scales have been normlized by the width (1 mm). Different color depth of the air bearing surface r:
represents different recess depth from the top (air bearing surface).

dimensions and shape of the wall profiles have a profound influence on the flying attitude
aresult, it is important to accurately capture these regions of rapidly changing elevation
the numerical model. In addition, the air bearing pressure field is characterized by irregul:
distributed regions with very high pressure gradient. To get accurate results, it is neces
to have fine enough grids to cover the above regions. Under these situations, unstruct
grids prove to be an economical and convenient way of decomposing the computatic
domain.

In this paper we present two numerical schemes to solve the generalized Reynolds e
tion based on the unstructured triangular meshes generated by the Delaunay techn

Read-Write
Element

Wall Profile Region

FIG. 4. The 3-D geometry of the NSIC slider. The horizontal scales have been normalized by the wic
(1 mm).
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presented in our previous papers [1, 2]. The convection part of the generalized Reyn
equation is discretized by two different schemes—the positive streamwise invariant (F
residual distribution approach in [3, 4] and the streamline upwind Petrov-Galerkin (SUP
finite element scheme [5] cast as a residual distribution formula [6]—while a standard lin
Galerkin type method [7] is used to model the diffusion part of the equation. A non-nes
multigrid technique based on the full storage approximation multi-grid strategy of Brar
[8] is implemented to improve the convergence rate of the Gauss—Seidel smoother use
solve the nonlinear discretized equation. Mavriplis and Jameson’s restriction and intel
lation functions [9] that suit non-nested triangular meshes are used to transfer the varia
and residues between the meshes.

Finally, the balanced steady state flying height of the slider is found by a Quasi—New
iteration method (Broyden’s method) described in Dennis and Schnabel [10].

2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

In air bearing simulation the generalized Reynolds equation is solved to get the pres
field. Because of the extremely narrow spacing between the slider and the disk (on the ¢
of 10 nm, which is only a fraction of the mean free path of the gas molecules, about 65
under normal operating conditions), the gas in the spacing is extremely rarefied and the
molecules at a solid surface no longer experience the same velocity as the surface, i.e.,
is slipping. The usual continuum and nonslip condition assumptions no longer adequa
describe the actual physics. Until now, the modified versions of the Reynolds equation
take the rarefaction and slipping effect into account give the most agreeable results \
those of experiments and direct Monte Carlo simulation [11-15]. The different versions
the Reynolds equation can be written in a unified dimensionless form as

3 d P 3 aP
o7 (PH = -5 (QPH38X — AXPH) + oy (QPHgaY — AyP H), 1)

whereP, H, andT are the dimensionless pressure, distance between air bearing surf
and disk surface and time, normalized my hy, and /@, respectively;p, is the ambient
pressurehy, is the flying height of a reference point on the slider (usually taken to be tt
point at the trailing edge center of the slider assumed to have zero recés)e constant
angular velocity of the disk. The expression= 12uwlL?/P,h2, is the squeeze number,
which represents the relative importance between the unsteady effect and the diffusion ef
The expressiong.x = 6uUL/pah2 and Ay = 6V L/ pah?, are the bearing numbers in
the x- andy-directions, respectively, which represent the relative importance between
convection effect and the diffusion effect. The teunis the dynamic viscosity of the gas,
U andV are the disk velocity components in tke and y-direction, and L is the length
scale of the slider (taken here to be the width of the slider). The term Q is the flow fact
which marks the difference between different rarefaction and slip models of the equati
Different Q for different models can be found in Burgdorfer [11], Hsia and Domoto [12
and Fukui and Kaneko [13]. In our simulation, the Fukui-Kaneko model is used, whi
is the best model available when the air bearing clearance is below 100 NM [15]. In |
implementation of the model, the database in [13] is used to find the flow factor. Along 1
outside boundary of the slider, the pressure is simply taken as the ambient pressure.
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3. MESH GENERATION

Because of its geometric flexibility in constructing quality meshes around complex cc
figurations and the relative convenience of incorporating an adaptive methodology,
also its efficiency and its ability to generate optimal connections to existing nodal poin
a Delaunay method as described in [16] is used as a building block in our approach
the incremental mesh refinement and adaptation. Using different refinement techniques
generate three sets of unstructured triangular meshes. For the coarsest meshes, it'simp
that the boundaries of the rails be represented in the triangulation, because the bound
are the places with dramatic recess depth change. The conforming Delaunay refiner
technique in Ruppert [17] is used to generate the coarsest conformed background me:
The longest-side bisection Delaunay refinement technique in Rivara and Inostroza [1¢
adopted to cluster fine meshes in the recess wall regions with rapid geometric change b
on geometric considerations (the maximum recess depth difference in each triangle r
be smaller than a prescribed value in order to model the rapid elevation change accurat
which forms the second finer meshes. For the final mesh adaptation, the maximum u
vided pressure difference in a triangle is used to decide whether the triangle needs fur
refinement. The same longest-side bisection Delaunay refinement technique isusedtor
the meshes. Details can be found in our previous papers [1, 2].

4. THE DISCRETIZATION OF THE CONVECTION EQUATION

Ignoring the diffusion terms in Eq. (1) for the moment and dividing the remaining tern
by o, we get the convection equation

0 d Ax d Ay
ST PH+ <7PH> & <7PH> =0. )

In the residual distribution schemes in [3, 4], the residual in triangle T is defined as

¢ =— //@dA //( ) V(PH dA

Arir - V(PH) = Z k[ (PH);, ©)

where At is the area of the triangle and = (A, Ay Ay)/o is the averaged wave speed in
each triangle. The conservation constraint gives

1
M= e // Axs Ay) A= =[(Ax, Ay + (Ax Ay)a+ (Ax Ayl (4)

In the above formulation, the bearing number is assumed to vary linearly in each trian
The inflow parametel’(jT is defined as

2k = At -1y, (5)

wheren; is the inward normal of each edge of the triangle with a magnitude equal to-
length (see Fig. 5). In the air bearing problekﬁ,only needs to be calculated once and
stored for later use.
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FIG.5. The inward normals of a triangle.

The residual of each triangle is distributed to its nodes by the distribution coeffigient

o =8¢ (6)

The convection equation can be discretized as

M
22 (PR — (PHY] Z¢. I PP o ZkWPH)““, @)
T=1 T=1 j=1

where Aq, is the area of the median dual aMlis the number of triangles withas one
node. In the above formulation, the solution is updated by accumulating the residuals at r
i, triangle by triangle. To put the schemes in a form that is convenient for the followit
multigrid iterations, we reformulated it such that the solution can be updated edge
edge

—? [(PH)M — (PH)] Z BT Z kI (PH)T*

<

= - Z (BT + BT (PR
+ (ﬁ.“ ki + B7K*) (PH), 8)

whereT; andT, are the two neigboring triangles sharing the eijige
For the PSI scheme [3, 4], the distribution coefficient can be written as

o7 — max(0, k" ) min(0, (PH); — (PH)in)¢ ") ©
" Y3 max(0, kT ) min(, (PH); — (PH)n)¢T)’

where (PH);, is the linearly interpolatedPH value at the inflow point, which can be
evaluated as

zle min(0, kT') (PH);
>;_amin(0.k})

(PH)in = (10)
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For the SUPG finite element scheme [5] in residual distribution form [6], the distributic
coefficient can be written as

1 h
T —~105 T 11
Al =305k (1)
in which the length scalk can be approximated as
3
h = max(|(n)x, [(M)y))- (12)

5. THE FINITE-ELEMENT DISCRETIZATION OF THE DIFFUSION TERMS

The diffusion terms are discretized using a Galerkin weighted integral [7]

dA

o

J1. [ (e anres)

M

> W [P = ().
j=1

Here the weight$Vi; are defined as

(13)

20 W) = QPH3L cotar(z>tLJ»)+QPI-I3R cotanagj),

(14)
whereQPH® andQPH3R are the average values @PH in the triangle to the left or right
Fig. 6.

of the edgej. The termsx; andag; are the opposite angles to the edgas shown in

FIG. 6. The median dual control volume
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6. ITERATIVE SOLVER OF THE DISCRETIZED EQUATIONS

All of the above numerical schemes can be written in a unified form as

Ci P+ zM: Cij P =8(P". P)), (15)
j=1
where
Aq Y T T T, T -
Ci=EHi+;(ﬂilkil+ﬂi2kiz)Hi+;Wiif (16)
Cij = (B K[ + B7K2) Hj — W, (17)
S(P". P = %(P H)!. (18)

Equation (15) is still nonlinear, becau§g andC;; depend onP"*1. One simple way
to linearize the equation is to talk® as the most recent known value of the last iteration
This is the so-called lagging technique. The resulting simultaneous equations are solve
a two sweep point Gauss—Seidel method. The first sweep starts from the beginning o
vertex list, and the second sweep starts from the end of the list. This takes into accoun
fact that the diffision terms in the Reynolds equation are elliptic in nature, and disturbal
information is spread simultaneously in all directions.

The solution for one fixed slider attitude is found by marching in time. For problems wi
fixed attitude, the unsteady term is not needed as part of the solution, but it is kept her
serve as an underrelaxation term. When a relatively large time step is used, the unst
term can be ignored, and the technique is more like a direct iteration than time march
The implicit schemes are unconditionally stable, so an arbitrarily large CFL number st
as 1.0E12 can be used.

7. GRID TRANSFER OPERATORS FOR THE MULTIGRID ALGORITHM

In the implementation of the multigrid algorithm, the variables, residues, and correctic
are transferred frequently between different mesh levels. The transfer procedure has vit:
fluence on the overall performance of the multigrid algorithm. Mavripilis and Jameson'’s |
grid transfer operators are proven to be well suited for multigrid algorithms over non-nes
unstructured triangular meshes. Here we simply adopt their operators.

When the restriction operator is applied to the variables, the operation can be taken
linear interpolation of the variables from the fine mesh nodes to the coarser mesh node
it operates on the residue, then the residue at the vertex of finer meshes can be distribus
the three vertices of the coaser triangle that encloses the vertex by its three area coordir
This guarantees the conservation of the residual in the transfer process.

The interpolation operator is used to transfer corrections from the coarser meshes tc
finer meshes. It can simply be taken as a linear interpolation.
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8. FAS MULTIGRID ALGORITHM

The full approximation storage (FAS) algorithm in Brandt [8] is well suited for nonlinea
equations. It solves the equations by iterating over several sets of meshes. In our a
implementation, three levels of meshes are used. Figure 7 shows the multigrid V cyc
used in the simulation. The number in each circle represents the number of iterations c
on that mesh level. At the beginning of each iteration, the coefficents of the equation
updated once and stored using the solution of the previous time step, and the resulting i
algebraic equations are solved by a fixed number of two sweep Gauss—Seidel iteration
our code, about 10 to 20 Gauss—Seidel iterations are used to find an approximate solu
To get a good initial guess we first perform 40 iterations on the coarsest meshes, ther
linearly interpolate the solution variables to the second-level meshes. Twenty iterati
are carried out there before we interpolate the solution variables to the third-level mes
where the standard V circle begins. NV cycles are carried out over the initial three s
of meshes to reduce the error to a certain level before we adaptively refine the third-le
meshes according to the pressure distribution. The following V cycles are performed o
the new finest meshes and the other two meshes until convergence is achieved. The nu
of iterations on each mesh level shown in the circle of Fig. 7 corresponds to the optimi:
convergence speed for some sliders.

9. INVERSE PROBLEM

Inair bearing simulation, the balanced steady state flying attitude of the slider correspc
ing to a fixed prescribed load is more important than the air bearing pressure distribu
of the steady state solution of one fixed attitude, because it is the former that is prescri
in the design of hard disk drives. The steady state flying attitude is defined as the on
which the pre-enforced suspension force and pitch and roll torques are balanced by t
counterparts generated by the air bearing that are functions of flying attitude. We can de
avectorR = (Ry, Ry, R3) with

Rl = I:air - Fs» (19)
R = (Mair)p + (Ms)p + (Mshear)pv (20)
RS = (Mair)r + (Ms)r + (Msheaara (21)

—> Convergence

O o
/ N\ /\ /\
68 68 680

FIG. 7. The multigrid V cycles.
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where F;;; is the resultant air bearing force of a guessed flying attitldeis the ap-

plied suspension forcél,ir, Mgsheas @nd Mg are moments caused by air bearing pressure
viscous shear force at the slider air bearing surface at that guessed attitude and the
pension, respectively. Subscriptsandr represent the projection in the pitch and roll
directions (see Fig. 2). In Fukui and Kaneko’s paper [13], the velocity profile at each mc
ified inverse Knudsen number is not available, and as a result the shear moments ce
be evaluated. But for most sliders, the moments caused by viscous shears are very ¢
compared to those caused by air bearing pressure. For example, as will be shown ir
slider design in Fig. 4, which is free of suspension moments, at the inner radial pc
tion (15 mm), the viscous shear moments only account for 1.9% and 0.04% of the t
in the pitch and roll directions, respectively. In addition, the difference between the \
locity profile predicted by the first-order slip model and the Fukui and Kaneko model
also small. To simplify the problem, the velocity profile predicted by the first-order sl
model [11] is used to evaluate the moments caused by viscous shear at the slider su

H BP Ax

(Msheadp = PaLhpy Z// < 53X 6(H +2Kn)> daxdy, (22)
HoP Ay

(Msheaar = PaLhm // < 2 8Y 6(H +2Kn)) dXdY (23)

where Z is the thickness of the slider, abds the dimesionless length of the slider.
Kn = A/hp, is the Knudsen number with being the mean free path of air molecules,
andR is a nonlinear function of the flying height, the pitch angle and the roll angle. Tt
object is to find a particular flying attitude that makRzero, which corresponds to the
steady state flying attitude. The Quasi—Newton iteration method (Broyden’s method)
nonlinear problems fully described in Dennis and Schnabel [10] is implemented to fi
the steady state flying attitude. Within each Quasi—Newton iteration, the air bearing fo
and moments are integrated from the pressure field calculated by the method prese
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FIG. 8. The first-level conforming meshes with 717 nodes.
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FIG. 9. The second-level meshes with 4245 nodes.

previously corresponding to the guessed attitude predicted by the Quasi—Newton step
viscous shear moments are evaluated using (22) and (23). Our experience shows that
erally only three to four Newton steps are needed to find the balanced steady state attit
depending on the initially assumed values.

10. RESULTS AND DISCUSSION

Figures 3and 4 depicta slider design intended to operate at a flying height of 5-10 nm.
length and width in the figures have been normalized by the dimensional width (1 mm),
thex- andy-coordinates in all the figures shown afterwards are dimensionless. Figures 8-
show the three initial meshes used in the simulation. Figure 11 shows the adaptively refi
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FIG. 11. The third-level meshes after mesh adaptation with 18112 nodes.

third-level meshes. From the above figures we see that all the regions with large geom
changes or pressure gradients have been efficiently captured by the mesh generatio
adaptation techniques. Figure 12 shows the comparison of the convergence histories c
iterations on a single set of meshes and the multigrid iteration of solving the generali
Reynolds equation at a guessed attitude. The ‘S’ at the legend end represents the iter
on a single set of meshes, while the ‘M’ represents multigrid iteration. The converget
difference among the different schemes is very small, and it is almost undetectable for
single mesh iteration from the figure. The sudden error jump in the curve correspond
mesh adaptation. Fromthe figure itis seen that for the single mesh iteration, the error initi
drops very fast. Only 10 iterations are needed to bring the error down from aboiit 10
to 107%. But after the high-frequency error has been smoothed out, the curve flatten:
takes more than 140 iterations to further reduce the error by about two orders of magnit
The multigrid curve shows that all error components can be efficiently removed. The
error drops almost linearly with the number of iterations (time steps). The figure also shc
that the multigrid techniqgue works well for both schemes on the triangular meshes. For
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FIG.12. The convergence comparison between the iteration on a single set of meshes and that of the mult
iteration for different schemes.

particular slider, only seven multigrid cycles are needed to get the converged solution. M
than one order of magnitude of simulation time is saved by use of the multigrid techniq
Figures 13 and 14 show the air bearing pressure contours at the steady state att
obtained by the PSI and SUPG schemes, respectively. The disk is rotating at 7200 R
and the slider is located at a 15 mm radial position with1a22 Radskew angle. The
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FIG. 13. The pressure contour calculated by the PSI scheme with 18110 nodes for the finest level meshe
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FIG. 14. The pressure contour calculated by the SUPG scheme with 18110 nodes for the finest level mes

prescribed suspension force is 14.7 mN at the center of the slider, the prescribed suspe
torques are zero. The pressure contours differ only by very small details.

Figure 15 shows the flying height grid convergence history of the final steady state fly
height. The results predicted by the two schemes agree with each other very well. E
schemes show a trend to converge to an 8-nm flying height. Figures 16 and 17 show
pitch angle and roll angle grid convergence histories, respectively. For the number of nc
corresponding to flying height convergence, all schemes reach grid convergence. Figul
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FIG. 15. The grid convergence of nominal flying height for different schemes.
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FIG. 17. The grid convergence of the roll angleRad) for different schemes.

800 -

600 -

400 -

200 -

0 20000 40000 60000 80000 100000

Number of Nodes

FIG. 18. The simulation time on a PIl 350 PC as a function of number of nodes.
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FIG. 19. The flying height at different radial position for the NSIC slider.

shows a plot of the simulation time for finding the steady state attitude as a function of
grid size.

Figure 19 compares the steady state flying heights of the slider at three radial posit
obtained by the two numerical schemes with experimental measurements using a s
fabricated from this design. The results predicted by both numerical schemes are ¢
close to the experimental data, and the small differences between the numerical simula
and the experiments are within the error limit of experiments.

11. SUMMARY AND CONCLUSIONS

Two numerical schemes are used to discretize the convection part of the general
Reynolds equation on unstructured triangular meshes. One is the PSI scheme, an
one is the SUPG scheme. For the Reynolds equation the unknown is the pressuie
to keep the convection equation in conserved form, we Rideas the variable in the
discretization of the convection part. The known spacihgs taken out later to form
the linearized simultaneous equations together with the contribution from the stron
nonlinear diffusion parts, which are disretized by a linear Galerkin finite element methe
The Reynolds equation is characterized by extremely strong convection effects in hard
drives, the bearing number is usually in the order of. The geometry of the air bearing
slider changes dramatically in a very narrow wall profile region. The dimension of the slic
is about 1 mm, while the horizontal scale of the wall profile region is aboutrhlOWithin
this narrow region, the pressure normally changes from several atmospheres at the be
surface to ambient or subambient at the fully recessed region. As a result, an extrer
large pressure gradient is built up. To accurately resolve the pressure profile is esse
to obtaining the accurate flying attitude. This requires that the numerical scheme use
discretize the convection equation introduce as little numerical diffusion error as possil
otherwise very large amounts of meshes have to be used before the grid converged re
can be obtained.
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In a previous code developed by Lu [19] for the slider design used here, apparent incr
ing of flying height with the increasing of the mesh number is still observed even wher
385 x 385 grid system is used. Lu’s code is based on the hybrid finite volume scheme
convection and diffusion equation of Patankar [20]. The current approach requires mi
fewer meshes to achieve grid convergence; this demonstrates that the PSI or SUPC
scretization of the convection equation together with the Galerkin treatment of the diffusi
parts are more accurate in solving the generalized Reynolds equation. The resulting nu
ical schemes are shown to be unconditionally stable. A non-nested FAS multigrid algorit
has been successfully employed to speed up the convergence rate of the schemes. The
grid algorithm requires no relationship between different mesh levels, but the relations
has influence on the covergence speed. Nearly one order of simulation time is save
implementing the multigrid algorithm. Even though the current code is based on unstr
tured meshes, which costs large amount of time to access data through a complicated
structure, its convergence speed can compete with Lu’s code [19], which uses a struct
rectangular mesh system and the same multigrid strategy of Brandt [8], even with a sim
mesh number. This demonstrates that Brandt’s FAS multigrid algorithm is very robust ¢
that Mavriplis and Jameson’s grid transfer operators are well suited for unstructured m
systems. The steady state flying attitude is found by a Quasi—Newton iteration metl
(Broyden’s method). Although the mesh number required by the slider air bearing pre
lem both physically and numerically is very large compared with other two-dimension
problems, the current code requires only about two to three minutes on a PII350 PC (v
a node number of about 18000) to find the acceptable final converged steady state fl
attitude for most sliders used in the industry. The results predicted by the code agree
with experimental data.
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